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Agenda

• Motivation: The reservoir management challenge
– What is the Problem?, 
– What have been done?
– What are the challenges?

• Problem Formulation
• The specific objectives and scope of this research
• Reservoir modeling and identification
• Model Predictive Control
• Self Learning Reservoir Management
• Conclusions
• The Way Forward
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Objective of this presentation

• To review current petroleum production 
issues regarding real time decision making 
and,

• To present the results of a continuous self-
learning optimization strategy to optimize 
field-wide productivity while satisfying 
reservoir physics, production and business 
constraints.
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The Reservoir Management Challenge
Reservoir Management is about a careful orchestration of technology, people & resources 

Injection
Facilities

Compression &Compression &
Treatment PlantsTreatment PlantsProductionProduction

Well & FacilitiesWell & Facilities

DrainageDrainage
AreaArea

Drill, build & OperateDrill, build & Operate

Subsurface
Characterization
Subsurface
Characterization Update ModelUpdate Model

ControlControl

MonitorMonitor

Establish or revise
Optimum Plan 
Establish or revise
Optimum Plan 

Exploitation Plan
Well location & number
Recovery mechanism
Surface facilities
Well intervention 
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Motivation

Traditional Problems
Complex & risky operations 

(Drilling, Workover, Prod.)

Poor reservoir prediction & 

production forecasting

Limited resources: injection 

volumes, facilities, people.

Unpredictability of events: 

gas or water, well damage.

Poor decision making ability 

to tune systems, thus, not 

optimized operations

More front-end engineering 

and knowledge sharing

Integrated Characterization & 

Modern visualization tools

Multivariable optimization, 

reengineering.

Monitoring & control devices, 

Beyond well measurements

Isolated optimization trials 

with limited success.

Current Approach
More data for analysis and 

integration limitations.

Long-term studies, Ill-posed 

tools, simple or incomplete. 

Models are not linked among 

different layers

Poor Justification, real time 

analysis in early stage.

Decisions made only on few 

pieces. Lack of Integration 

between subsurface-surface

Challenges

Hydrocarbon production system suffering major technical problems
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Research Specific Objectives

• Model based control system used to continuously 
optimize three-phase fluid migration in a multi-layered 
reservoir

• A data-driven model that is continuously updated 
with collected production data. 

• A self-learning and self-adaptive engine predicts the 
best operating points of a hydrocarbon-producing 
field, while integrating subsurface elements surface 
facilities and constraints (business, safety, quality, 
operability).

To develop a field-wide continuous self-learning optimization decision engine
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Research Framework

• Data handling
– Data acquisition, filtering, de-trending, outliers detection

• Model building and identification
– Gray box modeling: empirical reservoir modeling
– Partial least square impulse response, neural network and sub-space

• Reservoir performance prediction
– Real time Inflow performance and well restrictions
– Havlena-Odeh Material Balance

• Bi-layer optimization of operating parameters
– Reservoir best operating point based on the net present value optimization
– Regulatory downhole sleeves and wellhead choke controls

• Closed-loop control with history-matched numerical reservoir model
– Study of the system behavior in closed-loop

Combination of petroleum reservoir physics and process control technologies 

Data
Handling

Data
Handling

Model
Building
Model

Building
System

Identification
System

Identification
Reservoir

Performance
Reservoir

Performance
Bi-layer

Optimization
Bi-layer

Optimization
Close-loop

Control
Close-loop

Control
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Problem Definition

• Control undesired fluid production

• Exploit efficiently multilayer horizons

• Characterize inter-well relationship

• Maximize reserves and production

• Control from surface measurement

• Optimization fluid production (< bottle-necks)

• Commingle multilayer reservoirs

• Minimize production costs

• Maximize reserves and production

• Control from surface measurement

Injector - Producer Profile Mngt.Injector - Producer Profile Mngt. Field-Wide ManagementField-Wide Management

Agua

Crudo

Gas

k1

kn

h1

hn

Attempt to solve two significant reservoir management challenges
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Traditional (Ideal) Integrated Management Approach

System:
Reservoir, Wells &
Surface Facilities

Database
Parameters

Check Condition
Applications

Implementation

Well 
Model

Reservoir 
Model

Business
Model

Surface
Model

Data
Collection

Exploitation
Options

Business 
Constraints

Decision
Making Optimization

1
2

3

4

5

6

7

8

9

By collecting data,  a digital image is used to make decisions  
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Reservoir Modeling: Fluid Transport in Porous media
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Molar density in terms of Porous Volumes

Continuity 
Equation

Multiphase Darcy’s Law

Pressure Laplacian as a function of the saturation change

yi-1

yi+1
∆yi zi+1

zi-1

∆zi

Spatial distribution of pressure as a time function of saturation 

This realization is not used in this 
research, since it requires the 
knowledge of parameters that cannot 
be directly measured
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Reservoir Modeling: Flow through Wellbore
Radial Diffusivity Equation

Oil, water and gas flow as linear functions of the drawdown pressure

2

2

1
( )f

K p p p
c c r r r tφµ

⎛ ⎞∂ ∂ ∂
+ =⎜ ⎟+ ∂ ∂ ∂⎝ ⎠ re

rw
h k

pwf

pe

rs( )
2

,
4 4

t
i i

c rqp r t p E
kh kt

φµµ
π

⎛ ⎞⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜⎝ ⎠

General Solution given by Exponential Integral

2

4ln
4wf i

t w

q ktp p
kh c r
µ
π γφµ

= −
Wellbore flow given by logarithmic approximation

( )
( ), 141.2 ln

ro e wf o
o b

o o e w

kk h p p
q

B r r sµ
−

= ⎡ ⎤+⎣ ⎦

Steady-state Equation for the Undersaturated Oil-Flow

Inflow Performance (IPR) for Saturated reservoirs
2*

, 1 0.2 0.8
1.8

wf wfb
o o b

b b

p pp Jq q
p p

⎡ ⎤⎛ ⎞ ⎛ ⎞⋅
⎢ ⎥= + − −⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( )
( )
( )

2

0 1 2 3

2

0 1 2 3

2

0 1 2 3

k k k k
o e wf wf

k k k k
w e wf wf

k k k k
g e wf wf

q a a p a p a p

q b b p b p b p

q c c p c p c p

= + ⋅ + ⋅ + ⋅

= + ⋅ + ⋅ + ⋅

= + ⋅ + ⋅ + ⋅

Proposed IPR for continuous monitoring
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Reservoir Modeling: Average Pressure Modeling
Average Reservoir Pressure is a function of net mass production
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Simplification

Material Balance Equation

Proposed Pressure Modeling  for continuous monitoring

 Expansion of Oil and Original dissolved gas, 
 + Expansion of Gas Caps, Net Underground =

Withdrawal,    + Reduction of Hydrocarbon Pore Volume, 

 + Natural Water Influx, 

o

g

fw

e

E
E

F E
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Reservoir Modeling: Flow Through Pipes
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Tubing 
Performance

Reservoir 
Performance

Reservoir Modeling: Well Deliverability

Reservoir Pressure

Choke

Tubing Head Pressure

Fractional Flow of Phases

Bottomhole Flowing Pressure

Well operating point given by the intersection of reservoir and tubing performance

pwf , [psia]

q, [BPD]

pwf , [psia]

q, [BPD]

q, [BPD]

pwf , [psia]
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Reservoir as a Process Control System Structure

Agua

Crudo

Gas

Measured
Disturbances

Unmeasured
Disturbances

Unmeasured Outputs

Measured Outputs

Well flowing Pressure: pwf

Reservoir Pressure: pres

Reservoir Saturations: So, Sw

Flow Impairment: S, Kr’s

Multiphase Flow: qo, qw, gq

Tubing Head Pressure: pTHP

Tubing Head Temperature: TTHT

Zone Multiphase Flow: qo, qw, gq

Solid Production, Water Analysis

Solvent Injection
Gas Lift

ESP Speed

Water Injection
Heat Injection
Gas Injection

Flow Choke
Zone Control

Drainage Area: A

Manipulated Inputs

Controller

Feed forward path

Feed back path

Reservoir Rock Heterogeneity
Reservoir Fluid Distribution
Scheduling

Backpressure
Ambient Temperature

Flow Restrictions
Injection Fluid Restriction

Knowing input-output relationships, reservoir could seen as a process plant
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Reservoir Model Identification
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Example for Model Identification and Block Diagram

Reservoir Pressure: P
Oil Rate: qoProducer Flowing Pressure, pwf1

Inputs (U)

Water Fraction: fw

qwinj qo

Water Injection Rate: qwi

Outputs (Y)

u1

u2

y1
y2
y3
y4
y5
y6

Injector Flowing Pressure, pwf2

Gas Rate: qg

Water Rate: qw

o

w

g

q
q
qReservoir

(Simulator)
Reservoir

(Simulator)

Empirical
Model

Empirical
Model

wfp
+

d

IdentificationIdentificationEmpirical model whose 
structure is determined 
by first principles
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Model Identification Experimental Set-up

Reservoir
Numerical 

Model

Generate
Data
File

Run
Summary

File

Convert
Eclipse

To Excel

Run
Eclipse

Run
Matlab

Read
Excel
File

Auto
Scale

cumsum(A)
diff(A)

Select Input 
and Outputs

Split Data
Test & Pred

x,y

Subspace 
Identification

Neural
Network

Plot Rsc
Calculated

& Measured

Rescale
Parameters

FIR PLS

Windows and Eclipse Environment

Matlab Environment Level

0
1

x
σ
=
= U,Y c dA , A

A

Least Squares
Estimator
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Predictions Using Empirical Structured models
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Errors Using Empirical models
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Coefficients Using Empirical models
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Model Predictive Control
At time k future predictions of the output y can be made as 

| | |
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Minimization Problem to solve

Set Point Tracking Example
All Variables normalized so that They have zero mean and Std. Dev = 1

• Controls operation while optimizing performance

• Done over a receding or moving horizon

• Requires a setpoint from an upper level

MPC minimizes future prediction error while satisfying input constraints
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Example for Control and Block Diagram

Reservoir Pressure: P
Oil Rate Layer 1: qo1Producer Flowing Pressure, pwf1

Inputs (U)

Water Rate Layer 1: qw1

qwinj qoT

Water Injection Rate: qwi

Outputs (Y)

u1

u2

y1
y2
y3
y4
y5
y6

Injection Flowing Rate, qwinj u3

Producer Flowing Pressure, pwf2
Oil Rate Layer 2: qo2

Water Rate Layer 2: qw2

Layer 1, kh1

Layer 2, kh2

MPC
Controller

MPC
Controller

o

w

g

q
q
q

Reservoir
(Simulator)
Reservoir

(Simulator)

Empirical
Model

Empirical
Model

wfp
,

,

,

o sp

w sp

g sp

q
q
q

oq∆+

-

+

d

PLS Impulse 
Identification
PLS Impulse 
Identification
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Model Predictive Control Response
MPC minimizes future prediction error by satisfying input constraints
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New Self-learning Reservoir Management Technique
Continuous self-learning optimization decision engine
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Multilayer Reservoir Control Model

MPC
Controller

MPC
Controller

o

w

g

q
q
q

Reservoir
(Simulator)
Reservoir

(Simulator)

Empirical
Model

Empirical
Model

wfp
,

,

,

o sp

w sp

g sp

q
q
q

oq∆+

-

+

d

PLS Impulse 
Identification
PLS Impulse 
Identification

Linear Programming
Optimizer

Linear Programming
Optimizer

Optimization Layer

Regulatory Layer

Upper optimization layer passes the best operating point to lower layer

Net Present Value
Function

Net Present Value
Function Reservoir ForecastsReservoir Forecasts

Information
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Total Liquid Rate, BPD

Reservoir Performance
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Best operating point (LP) problem subject to well constraints
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Injector-producer Management Problem Results

Base Case No control

• Early water irruption reduced 
• High water cut reduced well’s vertical lift
• Further recovery possible at a greater cost

Self Learning Case

• Water irruption detected and controlled 
• Zone shut off permitted better well’s vertical lift
• Recovery accelerated at a minimum cost

Experimental Base: History-matched Model from El Furrial, HPHT, deep onshore, light oil 

The self-learning cased permitted less water and more oil produced
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Field-wide life cycle comparison Results
Clear benefits from extra little oil but with a lot less effort.

Oil rate Oil Cumulative

Wp, Produced Water Cumulative

Water rate

Self-Learning

Non-Controlled

Self-Learning

Non-Controlled

Self-Learning

Non-Controlled

-78%

-55%

∆Np=500 Mbbls

∆Rev=$5 Million

∆Wp= -18 MMbbls
∆Wi= -19 MMbbls

∆Rev= -$92.5 Million

5%

Wp Controlled

Wp
Non controlled

Winj Non controlled

Winj Controlled

Winj, Injected Water Cumulative
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New Self-learning Reservoir Management Technique
Continuous self-learning optimization decision engine
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Summary & Conclusions

• Novel multilevel self adaptive reservoir performance 
optimization architecture
– Upper level calculates the optimum operating point
– Based on NPV
– Optimum set point passed to underlying level

• Feasibility of the method demonstrated through a 
case study
– Reservoir performance continuously optimized by an 

adaptive self-learning decision engine
– Method capitalizes on available remotely actuated devices

• Algorithm feasible for downhole implementation
– Impart intelligent to downhole and surface actuation devices
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