

SELF-LEARNING RESERVOIR MANAGEMENT SPE 84064

L. Saputelli^{1,2,3}, M. Nikolaou², and M. J. Economides^{2,3}
¹PDVSA, ²University of Houston, ³SPE member

PRH 034 - Formação de Engenheiros nas Áreas de Automação, Controle, e Instrumentação do Petróleo e Gás - aciPG, participante do Programa de Recursos Humanos da ANP - Agência Nacional do Petróleo - para o setor Petróleo e Gás - PRH - ANP/MME/MCT

October 21 2004; Florianopolis

Agenda

- Motivation: The reservoir management challenge
 - What is the Problem?,
 - What have been done?
 - What are the challenges?
- Problem Formulation
- The specific objectives and scope of this research
- Reservoir modeling and identification
- Model Predictive Control
- Self Learning Reservoir Management
- Conclusions
- The Way Forward

Objective of this presentation

- To review current petroleum production issues regarding real time decision making and,
- To present the results of a continuous selflearning optimization strategy to optimize field-wide productivity while satisfying reservoir physics, production and business constraints.

The Reservoir Management Challenge

Motivation

<u>Traditional Problems</u>	Current Approach	<u>Challenges</u>
Complex & risky operations	More front-end engineering	More data for analysis and
(Drilling, Workover, Prod.)	and knowledge sharing	integration limitations.
Poor reservoir prediction &	Integrated Characterization &	Long-term studies, III-posed
production forecasting	Modern visualization tools	tools, simple or incomplete.
Limited resources: injection	Multivariable optimization,	Models are not linked among
volumes, facilities, people.	reengineering.	different layers
Unpredictability of events:	Monitoring & control devices,	Poor Justification, real time
gas or water, well damage.	Beyond well measurements	analysis in early stage.
Poor decision making ability	Isolated optimization trials	Decisions made only on few
to tune systems, thus, not	with limited success.	pieces. Lack of Integration
optimized operations		between subsurface-surface

Research Specific Objectives

- Model based control system used to continuously optimize three-phase fluid migration in a multi-layered reservoir
- A data-driven model that is continuously updated with collected production data.
- A self-learning and self-adaptive engine predicts the best operating points of a hydrocarbon-producing field, while integrating subsurface elements surface facilities and constraints (business, safety, quality, operability).

Research Framework

Data Handling

Model Building

System Identification

Reservoir Performance

Bi-layer Optimization Close-loop Control

- Data handling
 - Data acquisition, filtering, de-trending, outliers detection
- Model building and identification
 - Gray box modeling: empirical reservoir modeling
 - Partial least square impulse response, neural network and sub-space
- Reservoir performance prediction
 - Real time Inflow performance and well restrictions
 - Havlena-Odeh Material Balance
- Bi-layer optimization of operating parameters
 - Reservoir best operating point based on the net present value optimization
 - Regulatory downhole sleeves and wellhead choke controls
- Closed-loop control with history-matched numerical reservoir model
 - Study of the system behavior in closed-loop

Attempt to solve two significant reservoir management challenges

Problem Definition

Injector - Producer Profile Mngt.

- Control undesired fluid production
- Exploit efficiently multilayer horizons
- Characterize inter-well relationship
- Maximize reserves and production
- Control from surface measurement

h_1 k_1

Field-Wide Management

- Optimization fluid production (< bottle-necks)
- Commingle multilayer reservoirs
- Minimize production costs
- Maximize reserves and production
- Control from surface measurement

Traditional (Ideal) Integrated Management Approach

Reservoir Modeling: Fluid Transport in Porous media

Multiphase Darcy's Law

$$\mathbf{v_p} = -\frac{k_{rp}\mathbf{K}}{\mu_p} \left(\underline{\nabla} p_p - \rho_p \frac{\mathbf{g}}{g_c} \underline{\nabla} Z \right)$$

This realization is not used in this research, since it requires the knowledge of parameters that cannot be directly measured

Continuity Equation $\frac{\partial c}{\partial t} + \underline{\nabla} \cdot (c\mathbf{v}) = 0$

Pressure Laplacian as a function of the saturation change

$$\frac{k_{p}\mathbf{K}}{\mu_{p}}\underline{\nabla}\cdot\left[c\left(\underline{\nabla}p_{p}-\rho_{p}\frac{\mathbf{g}}{g_{c}}\underline{\nabla}Z\right)\right]=\frac{\partial}{\partial t}\left(\frac{\phi S_{p}}{\beta_{p}}\right)$$

$$c = \frac{M_W}{V_M} = \frac{A\Delta x \phi S_p / \beta_p}{A\Delta x} = \frac{\phi S_p}{\beta_p}$$

Molar density in terms of Porous Volumes

Reservoir Modeling: Flow through Wellbore

Radial Diffusivity Equation

$$\frac{K}{\phi\mu(c_f+c)} \left(\frac{\partial^2 p}{\partial r^2} + \frac{1}{r} \frac{\partial p}{\partial r} \right) = \frac{\partial p}{\partial t}$$

General Solution given by Exponential Integral

$$p(r,t) = p_i - \frac{q\mu}{4\pi kh} E_i \left(\frac{\phi\mu c_t r^2}{4kt} \right)$$

Wellbore flow given by logarithmic approximation

$$p_{wf} = p_i - \frac{q\mu}{4\pi kh} \ln \frac{4kt}{\gamma \phi \mu c_t r_w^2}$$

Steady-state Equation for the Undersaturated Oil-Flow

$$q_{o,b} = \frac{kk_{ro}h(p_{e} - p_{wf})_{o}}{141.2B_{o}\mu_{o}\left[\ln(r_{e}/r_{w}) + s\right]}$$

Inflow Performance (IPR) for Saturated reservoirs

$$q_{o} = q_{o,b} + \frac{p_{b} \cdot J^{*}}{1.8} \left[1 - 0.2 \left(\frac{p_{wf}}{p_{b}} \right) - 0.8 \left(\frac{p_{wf}}{p_{b}} \right)^{2} \right]$$

$$q_{g}^{k} = c_{0} + c_{1} \cdot p_{e}^{k} + c_{2} \cdot p_{wf}^{k} + c_{3} \cdot \left(p_{wf}^{k} \right)^{2}$$

Proposed IPR for continuous monitoring

$$q_o^k = a_0 + a_1 \cdot p_e^k + a_2 \cdot p_{wf}^k + a_3 \cdot (p_{wf}^k)^2$$

$$q_w^k = b_0 + b_1 \cdot p_e^k + b_2 \cdot p_{wf}^k + b_3 \cdot (p_{wf}^k)^2$$

$$q_g^k = c_0 + c_1 \cdot p_e^k + c_2 \cdot p_{wf}^k + c_3 \cdot (p_{wf}^k)^2$$

Reservoir Modeling: Average Pressure Modeling

Material Balance Equation

Net Underground = Withdrawal, *F*

Expansion of Oil and Original dissolved gas, E_a

- + Expansion of Gas Caps, E_g
- + Reduction of Hydrocarbon Pore Volume, E_{fw}
- + Natural Water Influx, W_e

Simplification

$$\begin{split} f\left[\overline{p}(t)\right] &= g\left(N_p, G_p, W_p, W_e\right) \\ \Rightarrow \overline{p} &= a_0 + a_1 \int q_o + a_2 \int q_w + a_3 \int q_g + a_4 \int q_{wi} \\ \Rightarrow \frac{d\overline{p}}{dt} &= b_1 q_o + b_2 q_w + b_3 q_g + b_4 q_{wi} \\ \Rightarrow \frac{1}{\Delta t} \left(\overline{p}^k - \overline{p}^{k-1}\right) &\approx c_0 + c_1 \cdot \overline{p}^k + c_2 \cdot p_{wf1}^k + c_3 \cdot \left(p_{wf1}^k\right)^2 + c_5 \cdot p_{wf2}^k + c_6 \cdot \left(p_{wf2}^k\right)^2 \end{split}$$

Proposed Pressure Modeling for continuous monitoring

$$\left(\overline{p}\right)^{k} = \left(\overline{p}\right)^{k-1} + c_1 + c_2 \cdot p_{wf1}^{k} + c_3 \cdot \left(p_{wf1}^{k}\right)^2 + c_4 \cdot p_{wf2}^{k} + c_5 \cdot \left(p_{wf2}^{k}\right)^2$$

Reservoir Modeling: Flow Through Pipes

Mechanical Energy Equation

$$\frac{dp}{\rho} + \frac{udu}{g_c} + \frac{g}{g_c}dz + \frac{2f_f u^2 dL}{g_c D} + dW_s = 0$$

Single-Phase Solution, Incompressible

$$\Delta p = p_1 - p_2 = \frac{g}{g_c} \rho \Delta z + \frac{\rho}{2g_c} \Delta u^2 + \frac{2f_f u^2 dL}{g_c D}$$

Two-Phase Solution, Hagerdorn & Brown (1965)

$$144\frac{dp}{dz} = \frac{-}{\rho} + \frac{f\dot{m}^2}{\left(7.413 \times 10^{10} D^5\right)} + \frac{-}{\rho} \frac{\Delta \left(u_m^2/2g_c\right)}{\Delta z}$$

Proposed Pressure Drop Modeling for Continuous Monitoring

$$(p_{wf}^{k} - p_{th})^{k} = b_{1}q_{o}^{k} + b_{2}q_{w}^{k} + b_{3}q_{g}^{k} + b_{4}(q_{o}^{k})^{2} + b_{5}(q_{w}^{k})^{2} + b_{6}(q_{g}^{k})^{2}$$

Reservoir Modeling: Well Deliverability

Knowing input-output relationships, reservoir could seen as a process plant

Reservoir as a Process Control System Structure

Reservoir Model Identification

Example for Model Identification and Block Diagram

Model Identification Experimental Set-up

Predictions Using Empirical Structured models

Errors Using Empirical models

Coefficients Using Empirical models

Model Predictive Control

At time **k** future predictions of the output **y** can be made as

$$\hat{y}_{k+n+j|k} = \sum_{i=n+1}^{n+N} h_i u_{k+n+j-i} + \hat{d}_{k|k} \quad \text{where} \quad \hat{d}_{k|k} = y_k - \sum_{i=n+1}^{n+N} h_i u_{k-i}$$

Minimization Problem to solve

- Controls operation while optimizing performance
- Done over a receding or moving horizon
- Requires a setpoint from an upper level

Set Point Tracking Example
All Variables normalized so that They have zero mean and Std. Dev = 1

Example for Control and Block Diagram

Model Predictive Control Response

Continuous self-learning optimization decision engine

New Self-learning Reservoir Management Technique

Multilayer Reservoir Control Model

Linear Optimization Problem

$$\max \left\{ \frac{\mathbf{NPV}}{q_o, q_w, q_g} = \sum_{1}^{N} f\left(q_o, q_w, q_g, \$, \Delta T\right) \right\}$$

$$NPV = \sum_{k=1}^{N} \frac{\left[\left(q_o^k P_o + q_g^k P_g - q_{wp}^k C_{wp} - q_{wi}^k C_{wi}\right) \Delta T_k - I_T^k - C_F^k \right] \left(1 - r^k\right)}{\left(1 + i\right)^{\frac{k \cdot \Delta T_k}{365}}}$$

Injector-producer Management Problem Results

Experimental Base: History-matched Model from El Furrial, HPHT, deep onshore, light oil

Base Case No control

- Early water irruption reduced
- High water cut reduced well's vertical lift
- Further recovery possible at a greater cost

Self Learning Case

- Water irruption detected and controlled
- Zone shut off permitted better well's vertical lift
- Recovery accelerated at a minimum cost

Clear benefits from extra little oil but with a lot less effort.

Field-wide life cycle comparison Results

New Self-learning Reservoir Management Technique

QP Optimization Loop

$$\min_{\Delta u} \left\{ \sum_{j=1}^{p} (\hat{y}_{k+j} - y^{SP})^{2} + R \sum_{j=1}^{m} \Delta u_{k+j}^{2} \right\}$$

s.t.

$$y_{\min} \le \hat{y}_{k+j|k} \le y_{\max}; j = [1, p]$$

$$u_{\min} \le u_{k+i|k} \le u_{\max}; \ j = [1, m]$$

$$u_{k+i|k} = u_{k+m-1|k}; i = [m, p]$$

LP Optimization Loop

$$\min_{\Delta u} \left\{ \sum_{i=1}^{p} (\hat{y}_{k+j} - y^{SP})^{2} + R \sum_{i=1}^{m} \Delta u_{k+j}^{2} \right\} \qquad \max \left\{ \underbrace{NPV}_{q_{o}, q_{w}, q_{g}} = \sum_{1}^{N} f(q_{o}, q_{w}, q_{g}, \$, \Delta T) \right\}$$

s.t.
$$\begin{cases} p_{\min} \le p_{k+p,k} \le p_{\max} \\ q_{\min} \le q_{k+p} \le q_{\max} \end{cases}$$

$$\Leftrightarrow igl\{\hat{q}_{o,opt},\hat{q}_{g,opt},\hat{q}_{w,opt}igr\}$$

LS Optimization Loop

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\mathbf{\theta}} + \mathbf{e}$$

$$\min_{a,b} \left\{ \sum_{i=1}^{\infty} \mathbf{e}_i^2 \right\} \Rightarrow \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \right)^{-1} \mathbf{X} \mathbf{Y}$$

$$\Leftrightarrow \begin{cases} q_{o,g,w} = f_1(p^k, p^{k-1}... q_T^k, q_T^{k-1},...) \\ p_{res} = f_n(p^k, p^{k-1}... q_T^k, q_T^{k-1},...) \end{cases}$$

Summary & Conclusions

- Novel multilevel self adaptive reservoir performance optimization architecture
 - Upper level calculates the optimum operating point
 - Based on NPV
 - Optimum set point passed to underlying level
- Feasibility of the method demonstrated through a case study
 - Reservoir performance continuously optimized by an adaptive self-learning decision engine
 - Method capitalizes on available remotely actuated devices
- Algorithm feasible for downhole implementation
 - Impart intelligent to downhole and surface actuation devices

Acknowledgement

- Research work was done under the guidance of Dr. Michael J. Economides and Dr. Michael Nikolaou at the University of Houston
- Research partially funded by PDVSA and Cullen College of Engineering Research Foundation at the University of Houston
- Academic access to software technology: EPS,
 Stonebond Technologies, KBR's Advanced Process
 Control framework.