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Objective of this presentation

e To review current petroleum production

Issues regarding real time decision making
and,

e To present the results of a continuous self-
learning optimization strategy to optimize
field-wide productivity while satisfying
reservoir physics, production and business
constraints.




Reservoir Management is about a careful orchestration of technology, people & resources

The Reservoir Management Challenge

Exploitation Plan
Well location & number

Recovery mechanism [T > Drill, build & Opefate-l --------
Surface facilities -

TTha
Well intervention .-~

. - Monitor
Production ompression
Well & Facilities

Injection )
! Facilities

! ‘w‘ 'A‘ AN val
1l

i

Establish or revise
Optimum Plan

A
|
|
1
1
|
\

1
1
1

1
1
!
. 1
Drainage
Area

Subsurface * |
Characterization I’ Update Model |‘




Hydrocarbon production system suffering major technical problems

Motivation

——————————————————————————————————————————————————————————————————————————————————————— e il it |
1 1 | 1

Traditional Problems

Complex & risky operations
(Drilling, Workover, Prod.)

: Poor reservoir prediction &

production forecasting

. Limited resources: injection

volumes, facilities, people.

: Unpredictability of events:

gas or water, well damage.

' Poor decision making ability
to tune systems, thus, not

optimized operations

Current Approach

More front-end engineering

and knowledge sharing

Integrated Characterization &

Modern visualization tools

Multivariable optimization,

reengineering.

Monitoring & control devices, !

Beyond well measurements !

Isolated optimization trials

with limited success.

Challenges

More data for analysis and

integration limitations.

Long-term studies, lll-posed

tools, simple or incomplete.

. Models are not linked among

different layers

Poor Justification, real time

analysis in early stage.

. Decisions made only on few

pieces. Lack of Integration

between subsurface-surface

__________________________________________________________________________________________________________________________________



To develop a field-wide continuous self-learning optimization decision engine

Research Specific Objectives

« Model based control system used to continuously
optimize three-phase fluid migration in a multi-layered
reservoir

A data-driven model that is continuously updated
with collected production data.

* A self-learning and self-adaptive engine predicts the
best operating points of a hydrocarbon-producing
field, while integrating subsurface elements surface
facilities and constraints (business, safety, quality,
operabillity).




Combination of petroleum reservoir physics and process control technologies

Research Framework

Data Model System Reservoir Bi-layer Close-loop
Handling Building ldentification Performance Optimization Control

« Data handling
— Data acquisition, filtering, de-trending, outliers detection
* Model building and identification
— Gray box modeling: empirical reservoir modeling
— Partial least square impulse response, neural network and sub-space
* Reservoir performance prediction
— Real time Inflow performance and well restrictions
— Havlena-Odeh Material Balance
« Bi-layer optimization of operating parameters
— Reservoir best operating point based on the net present value optimization
— Regulatory downhole sleeves and wellhead choke controls
» Closed-loop control with history-matched numerical reservoir model
— Study of the system behavior in closed-loop



Attempt to solve two significant reservoir management challenges

Problem Definition

Injector - Producer Profile Mngt. | Field-Wide Management

e  Control undesired fluid production e  Optimization fluid production (< bottle-necks)
*  Exploit efficiently multilayer horizons «  Commingle multilayer reservoirs

»  Characterize inter-well relationship e  Minimize production costs

 Maximize reserves and production « Maximize reserves and production

e  Control from surface measurement e  Control from surface measurement
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By collecting data, a digital image is used to make decisions

Traditional (Ideal) Integrated Management Approach

Implementation Data
P Collection
‘ I
Database
@ Business > Parameters @
Constraints Check Condition
Applications
@ Reservoir
v Model
DNTCLS.'on Optimization
aking - Well Surface
Model Model
\ Business /
Model
»Exploitation
Options




Spatial distribution of pressure as a time function of saturation

Reservoir Modeling: Fluid Transport in Porous media

Multiphase Darcy’s Law This realization is not used in this

research, since it requires the

ker g knowledge of parameters that cannot
vV, =— pr ~— Py —VZ be directly measured
Hy dc

l Pressure Laplacian as a function of the saturation change

. k K o @S

" Eauation %W'(CV) =0 . Y-Hzpp -y giyzﬂ = at[é " ]

’up c P

C= MW _ AAX¢S|O/'BP _ ¢Slo ) é A }
VM AAX ﬁp ’ """"""" _'_'_A_ AZ
= AT v B

Molar density in terms of Porous Volumes
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Oil, water and gas flow as linear functions of the drawdown pressure

Reservoir Modeling: Flow through Wellbore

Radial Diffusivity Equation

2 D
< ]

du(c, +c)\ or* reor) ot /<'/:;Z\re
General Solution given by Exponential Integral \\::/j
au o [oucr? SELE

p(r,t)=p — E, h Nk
4rkh | 4kt s B
. ¢

Wellbore flow given by logarithmic approximation &\::%

4kt g
Put = B — au In ot Pwi

drkh  youc,r!

) ) Proposed IPR for continuous monitoring
Steady-state Equation for the Undersaturated Oil-Flow

kKN (P P ),
~ 141.2B p, [In(r, /1, ) + 5]

2
df =2, +a- Pl +a,- Pl +a;-(ply )
k k k k \2
—h : b. - b. -
Inflow Performance (IPR) for Saturated reservoirs > qW 0 +b1 pe i 2 pr T < <p""f)

x 2 K K K Kk \?
Uo =Gop + p?LSJ {1—0.2( o j—O.S( pr) } o = QTGP TG Pu +C3'<pwf)
. /

qo,b

Py Py
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Average Reservoir Pressure is a function of net mass production

Reservoir Modeling: Average Pressure Modeling

Material Balance Equation Expansion of Oil and Original dissolved gas, E,
Net Underground = | + Expansion of Gas Caps, E,
Withdrawal, F + Reduction of Hydrocarbon Pore VVolume, E,,
simplification + Natural Water Influx, W,

f[B(t)]: g(Np’Gp’Wp’WE)
=p=a,+a[q,+a,[q,+a[q,+a]a,

d
— d—f = blqo + b2qw + b3qg + b4qwi

2
— 1
At(

—k  —k1 —k K K\ k K
P —-P ~C,+C - +C2'pwf1+C3'(pwfl) +C5'pwf2+06'(pr2)

Proposed Pressure Modeling for continuous monitoring

2

(E)k :(E)k_l"‘cl"'cz' p\i;vf1+c3°(pv5fl) +Cy- p\lz/fz +CS'(pv5f2)2
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Vertical flow as non-linear functions of flow rates

Reservoir Modeling: Flow Through Pipes

Mechanical Energy Equation Pressure (psia)

2 0 1000 2000 3000 4000 5000
dp udu g 2f.udL
_ 0 1 | | |
+ + dz + + dWs =0 \ —1‘,000 STB/D @‘ 500 SCF/STB;‘ WOR=1
o, J. J. J. D 2000 — 1,000 STB/D @ 1000 SCF/STB; WOR=1 | |

—1,000 STB/D @ 500 SCF/STB; WOR=0
4000 —1,000 STB/D @ 1000 SCF/STB; WOR=0
Single-Phase Solution, Incompressible
2
2 f uldL

9

Ap=p,—p, == pAz+-LAu?+ %8000 AN
g, 29, g.D N
Two-Phase Solution, Hagerdorn & Brown (1965) 12000 \\ K
144d_p:;+ frn” _+EA(U§‘/29°) o AR
dz (7.413x10°D°) p Az

Proposed Pressure Drop Modeling for Continuous Monitoring

(Pu —Pn) =Bk +b,5 +bygl +b, (a) +y () +by (af)
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Well operating point given by the intersection of reservoir and tubing performance

Reservoir Modeling: Well Deliverability

Tubing Head Pressure
Choke

A .
Pus» [Psia]

Fractional Flow of Phases g, [BPD]

Bottomhole Flowing Pressure

Reservoir Pressure
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Knowing input-output relationships, reservoir could seen as a process plant

Reservoir as a Process Control System Structure

Backpressure Reservoir Rock Heterogeneity
Ambient Temperature Measured Unmeasured Reservoir Fluid Distribution
Flow Restrictions  Djsturbances Disturbances Scheduling
Injection Fluid Restriction
Feed forward path T T
r \\\ ///

Manipulated Inputs

Flow Choke
Zone Control />7 Unmeasured Outputs
ESP Speed = x ’JJ/ 1 ip — Well flowing Pressure: p
Gas Lift W7 1 é%/ﬁ(& @ “re= | — Reservoir Pressure: p,
Controller Solvent Injection 1 5

Water Injection

— Flow Impairment: S, Kr’'s

1 l" rua — Reservoir Saturations: S, S,

Heat Injection

— Zone Multiphase Flow: q,, q,,, 94
Gas Injection

—» Drainage Area: A

A
| —— T =
| /// —>_——— Tubing Head Pressure: py;
—————————————————————— ) :
Feed back path \\\\ — » Tubing Head Temperature: Ty,
. » Multiphase Flow: q,, q,, g4

v

Solid Production, Water Analysis

Measured Outputs
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Recursive self-adaptive identification

Reservoir Model Identification

Physical System

] pk+1’ qk+1
Set point - Reservoir
5 g Simulator
pwf
(0 L Measure
\ 4
Control Con!trol R e — Inte: ret Mogel
Implementation N ’Sp Identification
Oo.0 - Optimize 4 n+N ~
" . yk+n+j|k z huk+n+] —i k|k
Set point Reservoir Value | Model o
Optimization
. . . 2 1 LS Optimization Loop
K K k k \? i ’ Pe =X0+e
0y = by +Db; - pe +b2'pwf+b3'(p<£> qu|=[b, B b, b p\‘;ﬁ <:>
2 “I ¢ c, C min<{ » e X'X) X'y
qg:CO_'—Cl'p:_'—Cz'p\:/f+C3'(p\5(vf) % 0o 4 & G (p\';/f>2 ab Z ( )

Qg = fl(pk’ p... q}‘,q}“l,...)
=
Prs = To (5 P L)
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Example for Model Identification and Block Diagram

Empirical _model Whose Identification
structure is determined
by first principles
Empirical
Model
d
o
- _ + o
eservoir
P (Simulator) d,
Outputs (Y)
Inputs (U) Y1, Reservoir Pressure: P

Y2, 0il Rate: do

Ys, Water Rate: d,,

Yay Water Fraction: f,

Y5, Gas Rate: dq

Yoy Water Injection Rate: g,

Producer Flowing Pressure, p,;, U,
—>

Injector Flowing Pressure, p,;, U,
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Model Identification Experimental Set-up

Windows and Eclipse Environment

Generate Reservoir Run Convert
Run . . Run
Data Ecliose Numerical » Summary Eclipse Matlab
File P Model File To Excel
Matlab Environment Level A 4
Read
Subspace Ex_cel
Identification _ File
x=0 ! A
— U,Y A
Plot Rsc Neural XY | spiitpata | =1 Auto |, |Select Input cumsum(A)
Calculated K Test & Pred ‘ Scale | and Outputs diff(A)
& Measured Networ P
FIR PLS Rescale |,
Parameters

Least Squares
Estimator
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Predictions Using Empirical Structured models

10 y1=FPR w10 y2=WOPR-p! 1l YIEWWPR-p1
T l . 15 F \EEEEEEEE EEELEEECY CELEELEG) CEEEEET - 15 T T T

: : - 5 : : —— qo-calc : : : '
115 ...... ......... ...... [ S : NP —C|EI -]D_ ........ .............. ........

bpd
iy}

: —— Yrale
1 [SCTECPERE ......... — ¥m

04 ..... ...... e qw—calc
: — w

0 100 200 300 400 500
A YB=AYIR-i1

100 200 300 400
PA=AWCT-p1

—— qgiw-calc

| S . ....... ....... e qg'l:all:
: : : I — giw

bpd

rnscid

fraction

05 i A . A 7 ; ' ; _ i A ; i
] 100 200 300 400 s00 250 300 350 400 450 ] 100 200 300 400 500

ul=BHP-p1 & uZ=BHP-il w10 Mp=Cum(y2) w10 WWe Mp=CumiyB y3)

—— We-calc

e — ]~

- 10000 f-- - ........ _p1

bbls
bibls

P
|
i

s0og g ......... , ....... 4

; PR S e ol ; A : ; B ; A : ;
100 200 300 400 ] 100 200 300 400 500 ] 100 200 300 400 500
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Errors Using Empirical models

w10%  %Errar @ y1=FFR %Errar @ y2=qgoil SoError @ yI=qw
: 2000
a
= =
2000
4000
g H H H H 50 H H H H -E000 H H H H
1] 100 200 300 400 500 1] 100 200 300 400 500 1] 100 200 300 400 500
SoErrar @ yd=wct YError @ y5=qgas ¥ 104 SErrar @ yE=qinj
5000 T T : T 150 T T T T 1.5 T T T r
'lll : : : ]
L 100
5000 bomnees feennnes oo beemned
= 5 5 : = 50
-10000 S SRy et bommmeed
15000 N - O
20000 H H H H 50 H H H H R H H H H
1] 100 200 300 400 500 1] 100 200 300 400 500 1] 100 200 300 400 500
%oError i@ Mp %oError @ WWp %oErrar @ Wi
+
10 : -1000 £0 :

100 200 300 400 500 0 100 200 300 400 500 o 100 200 300 400 500
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Coefficient

Coefficient

Coefficients Using Empirical models

Coef. of reservair pressure Coef. of Prad. Qil Rate

Coefficient

Coefficient

21



MPC minimizes future prediction error while satisfying input constraints

Model Predictive Control

At time k future predictions of the output y can be made as

n+N A ~ n+N
Yiensjk = Z hiuk+n+j—i +dk|k where dk|k =Y — Z hu,
i=n+1 i=n+1
Minimization Problem to solve
I . P ~ sp \2 m 2 ] " 104 yw1=Pressure y2 y3 = Well Oil Rates
min Z (yk+n+j|k -y ) + RZ AU, i 125 : , 20000 == = T
I=1 J=1 I T S W A 16000 |-| — gotesp [reeeeemiommmoeeeeend
s.t ' — qo2
- O - . - 10000 - — go2-sp
ymin < yk+n+j|k < ymax J =4 ' p - ! = ;
. L1 S ey IR S W
— p-pred
Unnin < uk+j—1|k < U ax J 1,---,m +  p-meas
1.06 ; : -5000 = :
Ui = Uierm-i i=m,,p-1 50 100 1850 a B 100 150
w10%  ¥2+y3= F. Oil Rate ul,u2= pfl 8 pwf2
24 T T T T

» Controls operation while optimizing performance

100

0 a0 150

» Done over a receding or moving horizon

* Requires a setpoint from an upper level Set Point Tracking Example

All Variables normalized so that They have zero mean and Std. Dev =1

______________________________________________________________________________________________________________________________________________|
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Example for Control and Block Diagram

PLS Impulse
Identification

.| Empirical i
i Model i d
qo,sp _________________________
A 4 q
O, + AQ P i . ’
w,sp 0 MPC w s g_esell’VOIl’ > —
q Controller (Simulator) w
9.5p -
Y
Outputs (Y)
Inputs (U) Olvinj oy 1, Reservoir Pressure: P
Producer Flowing Pressure, p,,, U, | Y2, oil Rate Layer 1: q,
_ - v l Y3, Oil Rate Layer 2: q,,
Producer Flowing Pressure, p,., U, Ya . \Water Rate Layer 1:
o _ ' = Layer 1, kh = o
Injection Flowing Rate, 0, Us — Layerz kh‘ = s, Water Rate Layer 2: g,
—> - ayer 2, - . .
- 2 Y&, Water Injection Rate: Oy,
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MPC minimizes future prediction error by satisfying input constraints

Model Predictive Control Response

<10t y1=Fressure y2 3 = Wfell Oil Rates yd w5 = Well Wifater Rates
1.25 T T 20000 r T 4
e e — ol e
____________ : ML 19000 f-| — gol-gp |-------t--mmmmmmmm oy
1.2 : T — o2 i

] R e

1.1 p-pred  [TTTTTTRTTOOC N
* p-meas
1.05 - ’
o 50 100 150
10t ¥2+y3=F. Oil Rate
24 r T

a 50 100 150 0 50 100 150 0 50 100 150

psi

w100 Cumm. Qil: us=Np 4 10Pumm Water: UB=\Wp U7=\Ve
12000 15 T : 15 : :
Mp-pred — WWp-pred !
10000 * MNp-meas ! + Wip-m :
10} s e N . . e |- AN
5000 = : : =
= : ! =
[ Ee— e S . mwme————
G000 - ' '
4000 0 i 0
0 &0 100 150 0 50 100 150




Continuous self-learning optimization decision engine

New Self-learning Reservoir Management Technique

Physical System

. . pk+1’qk+l
Set point q Reservoir
o Simulator
pwf
sp
g » Measure
. v
Control Cor;trol Inte: ret Model
Implementation N /:p Identification
¥lo opt - Optimize <« A & ~
Yiinsjk = z Ui+ Dy
i . i=n+1
Set point Reservoir Value | Model

Optimization

LP Optimization Loop

max{NPV :i f (qo,qw,qg,&AT)}
1

Go +Ohy +g

st {pmin < pk+p,k < pmax

qmin < qk+p < qmax

< {qo,opt ) qg,opt , qw,opt
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Upper optimization layer passes the best operating point to lower layer

Multilayer Reservoir Control Model

Linear Programming Net Present Value
Optimizer Function

Reservoir Forecasts

Optimization Layer

Regulatory Layer

Information
i | PLS Impulse |
Identification

Empirical
Model
_________________________ d
Uo.sp
A \ 4 =+ qo
Qu.sp *; % MPC Pur | Reservoir > >
Og 5 ] Controller (Simulator) N/ Qu
A,
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Down hole Flowing Pressure , psia

PypMax

p,,»MiIN

A

Best operating point (LP) problem subject to well constraints

Linear Optimization Problem

max{NPV =i f (qo,qw,qg,&AT)}
1

Go Ow g

Y[ XT TR TN Sy [

Reservoijr PerfOrm‘fije

K-AT,
(L+i) %

VLP 4: f,,max +p,p,min

VLP 3: f,,max +pq,p,max

VLP 2:f,,min +p;,,,min

VLP 1:f,min +p;,,,max

»

»

g,,min g, max Total Liquid Rate, BPD
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The self-learning cased permitted less water and more oil produced

Injector-producer Management Problem Results

Experimental Base: History-matched Model from El Furrial, HPHT, deep onshore, light oil

Base Case No control Self Learning Case
» Early water irruption reduced « Water irruption detected and controlled
» High water cut reduced well’s vertical lift » Zone shut off permitted better well’s vertical lift
* Further recovery possible at a greater cost » Recovery accelerated at a minimum cost
|FIELDTESTZ, LZ plane, 09 MNov 2012 FIELDTEST_WVERT, LZ plane, 09 MNow 2012

Diglonce  FEET
e 20005 eielila] Crsiames FEET
1000

— 14200

—
14600
Lo

=
L 14700

ilSot

QilGa1

001244 0.22158 0.43732 0.0d570 0.08720 T

Picture 1 of 1 Aelnlniata] 0.86214
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Clear benefits from extra little oil but with a lot less effort.

Field-wide life cycle comparison Results

FOPR ve. TMEAFIELDTEST, Oil rate FOPT va. TE (FIELDTEST) Oil Cumulative
30000 T SDOG00G i
1 2000000 SelfiEearning
b —_— 7000000
i ANp—5OO Mbbls T
20000 — BOOGOOG
i ARev=$5 Million 5500000 Non=Controtled
B
=] 7 D 4000000
S i i
& Self-Learning z
% 10600 — :'D_ 30000048
g i
_ raeilviolvie]
B 1000000
Ngn-Controtted —v
0 a
o} 1000 Z000 ID TDIUD ZDIOD
TIME DAYS TIME  DAVS
TIME  DAYS FWPT wz. TIME (FIELDTESTZ) FWiIT vs. TIME(FIELDTEST)
o 1300 Water rate 2000 R e )
40060 } 1 ! } f ] 1 4E+7 T
7] i W, Produced Water Cumulative
] ] . . W, Non controtied
8 Non-Conitrolled AW _=-18 MMbbls 1 W, Injected Water Cumulative inj
] AW.= -19 MMbbls 3E+7 —
30000 3 1 - -5500
i ARev=-$92.5 Million ] \ed
_ .L‘_DQE+7 — a g
Z 20000 — v T Nt 4
= = = 7 W, . Controlle
S | £ . n -78%
x | % 7
= TH1E+7 —
R, = -
&=
10000 == B -
£ Self-Learning
il 1T
— r CE+Q : T T T T T T T T T T
_ H o 1000 2000
a_| = | TIME  DAYS
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Continuous self-learning optimization decision engine

New Self-learning Reservoir Management Technique

Physical System

] pk+1’qk+l
Set point - Reservoir
5 g Simulator
pwf
qép _.-» Measure -
" v
Control Con{trol 4¢—— Inte:pret Model
Implementation N Identification
U0 - Optimize 4 n+N ~
P _ yk+n+]|k z Ui+ Dy
Set point Reservoir Value | Model o
Optimization
QP Optimization Loop LP Optimization Loop LS Optimization Loop
N - 2 m Y=X0+e
SP 2
nlhn{;‘(ykﬂ-—y ) +R;Aukﬂ} max{%\lql;\qu z f (qo,qw,qg,$ AT)}
mln{Ze } (XT ) XY
s.t. s.t pmin - pk+p,k - pmax
Ymin < yk+j|k < ymast = [1’ p] Ui < qk+p < Omax qo,g,w = fl( pk, pk’l... q-:-(,q:-(_l,...)
u. <u.. <u_;j=[Lm < K Pkt -
min = Hejic = Hmax j=[1m] S P = fn(p P O, g 1,...)
uk+i|k = uk+mfuk; I= [m’ p] < {qo,opt ! qg,opt ' qw,opt
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Summary & Conclusions

* Novel multilevel self adaptive reservoir performance
optimization architecture
— Upper level calculates the optimum operating point
— Based on NPV
— Optimum set point passed to underlying level

 Feasiblility of the method demonstrated through a
case study

— Reservoir performance continuously optimized by an
adaptive self-learning decision engine

— Method capitalizes on available remotely actuated devices

* Algorithm feasible for downhole implementation
— Impart intelligent to downhole and surface actuation devices
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