

Pesquisa na área de Gás Natural na Universidade Estadual de Campinas

Prof. Silvia Azucena Nebra Departamento de Energia Faculdade de Engenharia Mecânica Universidade Estadual de Campinas

E-mail: sanebra@fem.unicamp.br

- Faculdade de Engenharia Química
- Departamento de Processos Químicos
- Prof. Dr. Gustavo Paim Valença
- Instituto de Física –
- Laboratório de Hidrogênio e CENEH –
- Centro de Referência em Energia do Hidrogênio
 Prof. Dr. Ennio Peres da Silva
- > Núcleo Interdisciplinar de Planejamento Energético

Faculdade de Engenharia Mecânica
 Departamento de Energia
 Prof. Dra. Silvia Azucena Nebra
 Prof. Dr. Arnaldo da Silva Walter
 Prof. Dr. Denilson B. E. Santos
 Departamento de Engenharia de Petróleo

- > CEPETRO Centro de Estudos de Petróleo
- Instituto de Geociências

Cursos

- Faculdade de Engenharia Mecânica
- > Engenharia de Gás Natural Especialização
- Planejamento Energético (interdisciplinar) mestrado e doutorado
- Engenharia Mecânica mestrado e doutorado
- Instituto de Geociências Dep. de Geologia e Recursos Naturais
- Faculdade de Engenharia Mecânica Dep. de Engenharia de Petróleo
- > Ciência e Engenharia de Petróleo mestrado e doutorado
- Faculdade de Engenharia Química
- Engenharia Química mestrado e doutorado

Faculdade de Engenharia Química
 Departamento de Processos Químicos
 Prof. Dr. Gustavo Paim Valença

Desenvolvimento de catalisadores para eliminação de poluentes formados na combustão de gás natural

Metano (CH4) + oxigênio (O2) + *catalisador* → dióxido de carbono (CO2) + água (H2O)

Nas combustões de gás pode haver até um 2 % de metano não queimado nos produtos, o metano é um gás que produz efeito estufa e deve ser eliminado. Neste tema, foram desenvolvidas duas dissertações de mestrado, têm uma e um tese de doutorado, em andamento. Utilização de gás natural como matéria prima da indústria química: Transformação do gás natural em outros compostos

Rota Indireta

- > Objetivo: pesquisa experimental e teórica de um catalisador ótimo
 A pesquisa teórica inclui o uso de técnicas básicas de análise de reações químicas
- Se trabalha inicialmente testando os utilizados hoje na indústria:
 Catalisadores de níquel sobre óxido de alumínio (Ni/Al₂O₃)
 Objetivando realizar modificações na direção de aumento do rendimento

Rota direta

 $\begin{array}{l} \mbox{Metano} ({\rm CH}_4) + {\rm oxigênio} \, ({\rm O}_2) + catalisador \\ \rightarrow \mbox{ etano} \, ({\rm C}_2{\rm H}_6) + {\rm mon}\acute{\rm oxido} \mbox{ de carbono} \, ({\rm CO}) \\ & + {\rm di}\acute{\rm oxido} \mbox{ de carbono} \, ({\rm CO}_2) + {\rm água} \, ({\rm H}_2{\rm O}) \\ \mbox{Metano} \, ({\rm CH}_4) + {\rm oxigênio} \, ({\rm O}_2) + catalisador \\ & \rightarrow \mbox{ etileno} \, ({\rm C}_2{\rm H}_4) + {\rm mon}\acute{\rm oxido} \mbox{ de carbono} \, ({\rm CO}) \\ & + \mbox{ di}\acute{\rm oxido} \mbox{ de carbono} \, ({\rm CO}_2) + {\rm água} \, ({\rm H}_2{\rm O}) \end{array}$

Catalisador:

de tipo básico, óxido de magnésio com pequenas quantidades de lítio

Problema: o etano e o etileno são muito reativos com o oxigênio, eles reagem facilmente formando monóxido ou dióxido de carbono e água, com oxidação completa.

Dentro desta pesquisa foram realizadas duas teses de mestrado e uma de doutorado, mas ainda está em evolução Rendimento obtido: 5 a 10% de etano e etileno.

Rota direta

Metano (CH₄) + oxigênio (O₂) + *catalisador* \rightarrow metanol (C₂H₃OH)+ monóxido de carbono (CO) + dióxido de carbono (CO₂) + água (H₂O)

Metano (CH₄) + oxigênio (O₂) + *catalisador* \rightarrow formaldeído (CH₂O)+ monóxido de carbono (CO) + dióxido de carbono (CO₂) + água (H₂O)

Problema: semelhante ao caso anterior, com rendimento baixo na transformação, inferior a 5 %

Foi feita uma tese de doutorado explorando esta rota.

Rota direta

Metano (CH4) + calor + catalisador → benzeno (C₆H₆) + coque
Catalisador: H-ZSM-5, zeólita sintética contendo 3 % de molibdênio.
Problemas: a reação acontece a uma temperatura em torno de 700 °C e
precissa de uma fonte de calor
Foi desenvolvida uma tese de mestrado, iniciada uma de doutorado que se truncou.

Butano (C4H10) + oxígeno (O2) + *catalisador* \rightarrow anidrido maleico

Rendimento: foi obtido 60 % mas pode-se chegar a 80 % Foi desenvolvida uma tese de mestrado. Instituto de Física –
 Laboratório de Hidrogênio e CENEH –
 Centro de Referência em Energia do Hidrogênio
 Prof. Dr. Ennio Peres da Silva

Hydrogen Laboratory – Physics Institute

- LH2 has been working on H₂ technology since 1975.
- Some research topics:
 - Hydrogen economy;
 - Hydrogen in metals;
 - Automotive hydrogen technol
 - Alkaline water electrolysis for H₂ generation;
 - Trace gas analysis and gas standards;
 - Electrode surface treatment.

Brazilian Reference Center for Hydrogen Energy

Ministry of Science & Tech. University of Campinas University of Sao Paulo Environmental Secretary –

Power Generator Co. N G Organization

CENEH

www.ifi.unicamp.br/ceneh ceneh@ifi.unicamp.br

SP

hidrogênio

- A produção de hidrogênio tem crescido 8-10 % ao ano
- 50 % do total produzido é utilizado para produzir amônia
 O restante é utilizado para :
- Hidro- craqueamento e hidro-desulfurização de petróleo
- Produção de metanol
- 90 % da produção é feita a partir de combustíveis fósseis (hidrocarbonetos leves: metano, etano)
- Utilização futura: células combustíveis

Form	nas de produção	de h	idrogênio		
	insumos		processo	pr	odutos
Gás Natu e combus	ral tíveis fósseis leves	R C	eforma com vapor raqueamento térmico	CO,	CO ₂ , H ₂ , CH ₄
água	Energia elétrica		Eletrolisis		O ₂ , H ₂
+	Calor, metano, et	с.	Decomposição térmic termoquímica	ca,	O ₂ , H ₂ , H ₂ O, O₂, H₂, CH₄
	+ luz		fotólisis, foto- eletroquímica		0 ₂ , H ₂
b	oiomassa	Gas	sificação ou pirólisis		
1.5		Fer	mentação com bactéria	S	J, CO_2, H_2, CH_2

Hydrogen Production at LH2

- Alkaline water
 electrolysis plant for H₂
 production;
- Operation from 1982 to 2000;
- 2 electrolysers: 70°C; 30% KOH_{aq}; 1.5 m³ h⁻¹
- Production between 500 to 1.000 m³ per month of high purity hydrogen (99.9995% or 5.5);

Hydrogen Production at LH2

- Although the small scale, the operation is quite similar to larger plants;
- This work gave us a good experience in purification and manipulation of high purity hydrogen and other gases.
- Development of trace gas analysis and standards in Brazil.

1b

Hydrogen and Fuel Cells System

- A- PEM fuel cells
- **B-** Electrolyzer
- C- Compressed H₂ storage tank
- D- H₂ drying and purification
- E- Data acquisition system
- F- Control panel and power conditioning

3b

VEGA Project – Electric Hybrid Vehicle 2a

>It is a test platform for electric vehicle powertrains

- VEGA I: Stationary H₂ ICE + batteries + PV (1996)
- VEGA II: Hydrogen PEMFC + batteries (2003)
- VEGA III: Ethanol reformer + H₂ PEMFC + batteries (2004)

VEGA I in Brasília

VEGA I in Brasília

VEGA Project – Electric Hybrid Vehicle 2b

	Power Sy	ystem	Electric Motor	Battery System	Hydrogen Source	Max. Speed	Range
VEGA I	Stationary ICE generator	2.5 kW	15 kW	10 x 100 Ah	2 cylinders 12 m ³ 200 bar	50 km h ⁻¹	50 km
VEGA II	PEMFC	7.5 kW	25 kW	20 x 50 Ah	2 cylinders 12 m ³ 200 bar	70 km h ⁻¹	70 km
VEGA III	PEMFC	7.5 kW	25 kW	20 x 50 Ah	Ethanol reformer (5kW) 5 m ³ h ⁻¹		

Ethanol Reformer for Hydrogen Production

- **PROJECT 1** UNICAMP Allothermal steam reformer
- >Ni-Cu catalyst deposited on Al₂O₃ pellets;
- ≻Hydrogen production: 0.5 m³ h⁻¹, enough for a 500 W PEMFC
- Molecular sieve purification system:

Before purification: $[H_2] = 68\%$ After purification: $[H_2] > 99\%$ [CO] < 35 ppm; [CH₄], [CO₂] was not observed

Ethanol Reformer for Hydrogen Production

4C

- Project developed together with CPFL (power distribution Co.)
- Implementation and operation of a distributed generation system at UNICAMP's hospital
- The DG system consists of:
 - 10 kW hydrogen PEMFC with a natural gas reformer;
 - 30 kW natural gas micro-turbine, co-generation of electricity and heat;
 - 10 kW photovoltaic panels.
- ➢ Project span → 2002 2008

Faculdade de Engenharia Mecânica
Departamento de Energia
Prof. Dra. Silvia Azucena Nebra
Prof. Dr. Arnaldo da Silva Walter
Prof. Dr. Denilson B. E. Santos

> Projeto: Análise / Otimização de Diferentes Processos de Produção de Hidrogênio a partir de Gás Natural **Órgão financiador: FAPESP e CNPg** Período: Agosto / 2001 a Julho / 2005 Equipe: Lourenço Goubira Alves, Gustavo Paim Valença, Silvia A. Nebra. > Projeto: Economia de Energia e Cogeração na UNICAMP. Órgão centralizador: Núcleo Interdisciplinar de Planejamento Energético-UNICAMP. Órgão financiador : FINEP (CT-Infra), Primeira fase: Dezembro/2001 a Fevereiro/2002. Segunda fase: Dezembro / 2002 a Dezembro / 2004. Coordenador: Prof. Dr. Luis Augusto Cortez. Equipe (cogeração): Raúl Gonzales Palomino, Rodrigo M. Leme, Denilson B. E. Santos, Arnaldo da Silva Walter, Silvia A. Nebra.

> Projeto: Análise / Otimização de Diferentes Processos de Produção

de Hidrogênio a partir de Gás Natural

Ciclo com recuperação química para turbinas a gás

- Simulação
- Otimização
- Análise energética e exergética
 Análise termoeconômica :
- teoria do custo exergético,
- análise funcional considerando exergia física e química,
- análise funcional incluindo exergia física, e química e neguentropia.

Simulação do processo industrial da produção de hidrogênio pela rota indireta, que inclui as etapas de compressão do gás natural, reforma, reator "shift" de alta e de baixa temperatura, unidades de separação do CO2 por absorção, unidade de separação do H2 por absorção.

> Lourenço Gobira Alves Silvia Azucena Nebra

Ciclo: turbina a gás com recuperação química / produção de gás de síntese

Reação de Reforma

A Reforma consiste em fazer reagir o Gás Natural (metano) com água num reformador a alta temperatura e com catalisador a base de Níquel.

 $CH_4 + 2 H_2O \rightarrow CO_2 + 4 H_2$

A Reforma ocorre através de duas reações em seqüência:

1 - CH₄ + H₂O → CO + 3 H₂ Δ H = +205.040 J/mol (CH₄) (endot.) 2 - CO + H₂O → CO₂ + H₂ Δ H = - 41.213 J/mol (CO) (exot.)

Produtos da Reforma

 $\alpha 1 \text{ CH}_4 + \alpha 2 \text{ H}_2\text{O} \rightarrow \beta 1 \text{ CH}_4 + \beta 2 \text{ CO} + \beta 3 \text{ CO}_2 + \beta 4 \text{ H}_2 + \beta 5 \text{ H}_2\text{O}$ Entra a mistura de Gás e Vapor de proporção determinada

Entram: Metano, α1

Vapor, $\alpha 2$

Saem:Metano Residual, β1Monóxido de Carbono, β2Dióxido de Carbono, β3Hidrogênio, β4Vapor, β5

Composição na Saída do Reformador

Através de balanço estequiométrico determinam-se três relações:

balanço de carbono: $\alpha 1 = \beta 1 + \beta 2 + \beta 3$

balanço de hidrogênio: $4 \alpha 1 + 2 \alpha 2 = 4 \beta 1 + 2 \beta 4 + 2 \beta 5$

balanço de oxigênio: $\alpha 2 = \beta 2 + 2\beta 3 + \beta 5$. (6)

As duas relações que faltam são obtidas através de equilíbrio químico:

$$\begin{split} \mathsf{K}_{p,1} &= \frac{\mathsf{P}_{c0}\mathsf{P}_{_{H_{2}}}^{3}}{\mathsf{P}_{cH_{4}}\mathsf{P}_{_{H_{2}}}\mathsf{P}_{_{0}}^{2}} = \frac{\beta_{2}\beta_{4}^{3}}{\beta_{1}\beta_{5}}\frac{1}{\mathsf{N}_{tot}^{2}}\frac{\mathsf{P}_{out,2}^{2}}{\mathsf{P}_{_{0}}^{2}} \quad \mathsf{K}_{p,1} = \exp\left(30,688 - \frac{27463}{\mathsf{T}}\right) \\ \mathsf{K}_{p,2} &= \frac{\mathsf{P}_{co_{2}}\mathsf{P}_{_{H_{2}}}}{\mathsf{P}_{co}}\mathsf{P}_{_{H_{2}}} = \frac{\beta_{3}\beta_{4}}{\beta_{2}\beta_{5}} \quad \mathsf{K}_{p,2} = \exp\left(\frac{4084}{\mathsf{T}} - 3,765\right) \end{split}$$

Otimização do Processo

O objetivo da simulação é maximizar o lucro bruto operacional, entendido como o saldo entre o Preço dos Produtos e Custo dos Insumos.

→ O custo dos equipamentos não foi levado em consideração porque a planta é hipotética, não tendo dimensões definidas.

Lucro Bruto Operacional

Lu = Ce * Wv + Cv * mv – Cc * mc – Ca * ma

Ce = 44,87 US\$/MWh, preço da energia elétrica gerada. Cv = 0,009 US\$/kg, preço de venda do vapor saturado. Cc = 0,0778 US\$/kg, custo de aquisição do gás natural Ca = 0,00022 US\$/kg, custo da água de reposição. Wv: energia elétrica disponível para venda. (KWh) mc: massa de combustível utilizada. (kg) mv: massa de vapor disponível para venda (kg/s) ma: massa de água de reposição (kg/s)

Restrições

T3 < 1400 K (1127 °C) A turbina não suporta temperaturas superiores sob risco de fadiga térmica.

h4 = h3-ηt(h3-h4,iso). A expansão adiabática vincula a variação da temperatura com a pressão. Esta relação fornece o menor valor possível para a temperatura T4. Quanto menor for a temperatura no ponto 4 maior será a geração elétrica, por outro lado menor será a capacidade de gerar vapor para venda.

T6 > 413 K (130 °C). A razão deste valor é evitar condensação na tubulação de descarga, o que ocasiona liquefação de vapores ácidos nas paredes da chaminé.

m12 ≥ 0. Indica que o sistema precisa prover pelo menos o vapor necessário ao próprio ciclo.

650 K < T15 < 923 K. A temperatura da reforma deverá estar entre estes dois limites, faixa usual de reforma.

- T4 T15 = 20. Condição imposta de transferência de calor no reformador (Pinch Point).
- $0,1 \le m15 \le 0,25$. Condições operacionais da turbina que regula a vazão e o excesso de ar

 $0,3 \le m13 \le 0,16$. Condições operacionais da turbina.

Parâmetros Operacionais Otimizados

Substância	T (K)	m (kg)	P(kPa)
1 (ar atmosférico)	298	49	101.3
2 (ar comprimido)	689	49	1500
3 (gases quentes)	1400	57.2	1500
4 (gases)	826	57.2	105.4
5 (gases)	688	57.2	103.4
6 (gases)	413	57.2	101.3
7 (metano)	298	1	499.5
8 (metano)	415	1	2138
9 (água)	298	7.1	199,6
10 (água)	298	7,1	2074
11 (vapor saturado)	484	7,1	1972
12 (vapor saturado)	-	0	
13 (vapor saturado)	484	7,1	1972
15 (gás reformado)	806	8,1	1950

Composição dos fluxos

Substância	Fluxo 3	Fluxo 14	Fluxo 15
CH ₄		0.1357	0.0878
CO ₂	0.0286	13 - etc.	0.0356
СО	-	-	0.0020
O ₂	0.1047		
N ₂	0.6095		
H ₂ O	0.2572	0.8643	0.7259
H ₂			0.1486

Resultados da planta Otimizada

- No seu ponto de maior Lucro Bruto Operacional a planta produz US\$ 0,2248 por kg de Gás Natural.
- A planta gera 6,79 kWh por kg de Gás Natural.
- O Consumo de água pela planta foi 7,1 kg por kg de Gás Natural.
- O Rendimento termodinâmico foi de 47%, ou seja, de cada 100 kJ contidos no combustível 47 são convertidos em eletricidade. Esta característica a classifica como de alta eficiência.

Exergia dos principais fluxos

Substância	E _{ph} (kJ)	E _{ch} (kJ)	E _x (kJ)
1 (ar atmosférico)	0	0	0
2 (ar comprimido)	383	0	383
3 (gases quentes)	1294	63	1356
4 (gases)	332	63	394
5 (gases)	202	63	265
6 (gases)	24	63	87
7 (metano)	5	1056	1061
8 (metano)	11	1056	1067
9 (água)	0	7	7
10 (água)	0	7	7
11 (vapor saturado)	133	7	140
12 (vapor saturado)	-	- 20-	
13 (vapor saturado)	133	7	140
15 (gás reformado)	155	1155	1310
16 (gás reformado)			-
17 (gás reformado)	155	1155	1310

Equipamento	ε (%)	l (kW)	I (%)	η (%)
Compressor de ar	93.2	27.8	4.9	85
Câmara de Combustão	74.3	336.6	58.8	100
Turbina	94.9	48.7	8.5	90
Reformador	79.7	26.2	4.6	100
Compressor de Metano	96.1	0.2	0.0	94.6
Evaporador	74.3	45.8	8.0	100
Bomba de Água	90.0	0.0	0.0	90.0
Chaminé	0	86.8	15.2	0
Ciclo	46.5	572.2	100	46.8

Teoria do Custo Exergético

Custos Exergéticos

Substância	k	Ex [*] (kJ)
1 (ar atmosférico)	1	0
2 (ar comprimido)	2,309	884,5
3 (gases quentes)	2,044	2772
4 (gases)	2,044	806,1
5 (gases)	2,044	541,7
6 (gases)	0	0
7 (metano)	1	1061
8 (metano)	1,006	1074
9 (água)	1	7,296
10 (água)	1,050	7,951
11 (vapor saturado)	3,923	549,7
12 (vapor saturado)		
13 (vapor saturado)	3,923	549,7
15 (gás reformado)	1,441	1888
We (Potência Elétrica)	2,153	1069

Compresso

de Ar

Genador

Turbine

F

 ✓ Divisão da exergía em exergía física e exergía química

 ✓ Os fluxos são agrupados em Junções e depois distribuídos aos "consumidores"
 ✓ Custos marginais (custos médios)

ANÁLISE FUNCIONAL Considerando exergía química e física

Insumos e Produtos em cada volume de controle

13

15

IG

We

FC FT

ST

3W

C2

WI

CS.

W7

10

TS

0

	k	E [*] (kJ)
С	1.129	1305
C2	1.194	1305
4C	2.628	241.2
F.	1	1061
Fc	1	1056
Ft	1	5.023
S	1	7.295
Sc	1	7.281
St	1	0.014
1T	2.309	884.4
2 T	1.726	1305
4 T	2.044	23.08
5T	2.749	364.3
6T	2.392	0.6551
7T	2.241	12.3

Custos da Estrutura Funcional

	k	E*(kJ)
Т	2.005	2595
Т3	2.044	1966
T4	2.044	264.3
T5	2.044	364.3
Q	2.044	0
3W	2.129	1966
W1	2.153	884.4
W6	2.153	0.6551
W7	2.153	12.3
W _e	2.153	1069
C 8	0	0
Т8	0	0
L	0	0

Simulação do sistema industrial de produção de hidrogênio

Cogeração na UNICAMP

Review e discussão:

 A indústria de gás natural em América do Sul – desenvolvimento, regulação, políticas.

Cogeração: sistemas.

 Cogeração: políticas em alguns países europeus, Estados Unidos e Brasil.

 Análise de viabilidade econômica de propostas comerciais para a instalação de um sistema de cogeração para o HC- UNICAMP

 Proposta de um sistema de cogeração para o HC – UNICAMP: análise de primeira e segunda lei da termodinâmica, análise termoeconómica.

Proposta de um sistema de medição e de análise a ser instalado no sistema de cogeração.

 Análise energética, exergética e termoeconómica de um sistema de refrigeração por absorção.

Cogeração na Comunidade Européia

Antes da crise do petróleo de 1973, nos paises da CEE se cogerava o 15 % do consumo total de eletricidade.

Na década de 1980 e em maior parte de 1990, os paises da Europa com a exceção da França, apostaram claramente pela utilização máxima da cogeração.

Fonte: dissertação de Mestrado, Raúl Gonzales Palomino.

Cogeração na Espanha

•

Potencia instalada da cogeração na Espanha

Energia produzida pela cogeração para consumo próprio e exportação

- A Espanha tem emergido como um dos lideres na Europa no desenvolvimento da cogeração.
- A primeira regulamentação aparece como conseqüência da Lei sobre Conservação da Energia, Lei 82/1980 de 30 de novembro.
- Além das outras importantes razões, o crescimento abrupto da autoprodução que ocorreu na Espanha é conseqüência fundamentalmente do diferencial de preços energéticos.
- O desenvolvimento da cogeração deve-se, em parte aos incentivos recolhidos na regulação especifica, e em parte as ajudas derivadas do Plano de Economia e Eficiência Energética (PAEE).
- A partir de 1998 paralisaram-se quase por completo os investimentos neste setor.
 - A crise do petróleo de 1999 encareceu enormemente os preços do gás natural, o qual esta ligada ao preço do petróleo
- Na Espanha não se fazia investimento em centrais por mais de 15 anos.

Fonte: dissertação mestrado R. Gonzales Palomino

Cogeração no Brasil

- A cogeração com gás natural no Brasil faz duas décadas não representava prioridade para o setor.
- A importação do gás natural da Bolívia no final da década passada, gerou expectativas para seu uso na cogeração e geração termoelétrica.
- No Brasil, as industrias de papel, celulose, química e cerâmica são os segmentos potenciais para a cogeração de grande porte.
- Os shopping centers, os grandes condomínios residenciais, os hospitais, os complexos hoteleiros, os aeroportos e as empresas que utilizam ar condicionado, representam segmentos potenciais de cogeração de pequeno porte.
- A cogeração é somente usada em casos muito específicos no Brasil.

Potencial da cogeração no setor de papel e celulose, químico e de alimentos e bebidas no Brasil

Setor	Capacidade instalada (MW) 1998	Potencial ter com sistemas convencio nais	rmodinâmico com sistemas eficientes	Potenc ial técnic o (MW)
Papel e celulose	718	2694	8389	1740
Químico	389	3452	12542	1581
Alimentos e bebidas	995	6573	28660	402 0

Fonte: CCPE, Plano Decenal de Expansão 2000 – 2009 (2000)

Fonte: dissertação mestrado R. Gonzales Palomino

Cogeração no Brasil

- No ano 2000, o Ministério de Minas e Energia (MME) empreendeu o Programa de Incentivo à Cogeração.
- O potencial técnico de cogeração em shopping centers no Brasil esta estimado entre 1270 MW e 2000 MW.
- O potencial técnico da cogeração em hospitais no Brasil é de 500 MW, encontrando-se 52 % deste potencial na região sudeste do país.

- Uns dos aspectos que não favorecem a cogeração no Brasil, são as altas taxas de juros e instabilidade na taxa de cambio.
- O custo pago pela Demanda Suplementar de Reserva (DSR) representa também uma barreira para o desenvolvimento da cogeração.
- Uns dos aspectos mais prejudiciais para a utilização da cogeração no Brasil é a diferença de preços energéticos da eletricidade e o gás natural.

Análise de viabilidade econômica cogeração no HC-UNICAMP

Para a análise da viabilidade econômica, em geral, são comparados os custos operacionais sem cogeração, e com as alternativas de cogeração.

a) consumo anual de energia elétrica.

b) consumo anual de energia térmica.

c) consumo de eletricidade na ponta e fora de ponta.

d) consumo anual de combustível.

e) horas de funcionamento do sistema.

f) tarifa elétrica e potência contratada.

g) custo de manutenção e operação.

Demanda de energia do HC UNICAMP

Demanda de eletricidade

Consumo de eletricidade

Demanda de vapor

Demanda de água gelada

Fonte: dissertação mestrado R. Gonzales Palomino

Alternativas de Solução

EMPRESA	Solução	Máquina motora	Caldeira recuperação	Chiller absorção	Investimento (US\$)
		2 x MCI Caterpillar	vapor saturado 10 bar		1.730.000
	IB-1	810 kWe (cada)	+/- 1300 kg/h	simples efeito 250 TR's	
IBERESE		33,2% de eficiência elétrica			
S.A.		3 x MCI Caterpillar	vapor saturado 10 bar		2.381.000
	IB-2	810 kWe (cada)	+/- 2000 kg/h	simples efeito 380 TR's	1.1
		33,2% de eficiência elétrica			
		TG Pratt & Whitney ST-30	vapor saturado 8 bar		4.067.980
	UN-1	3300 kWe (ISO)	6948 kg/h	duplo efeito 800 TR's	
UNIÃO		2350 kWe; 26,9%; 30o C 75% UR			. 5.51
Engenharia		TG Pratt & Whitney ST-40	vapor saturado 8 bar		4.206.319
	UN-2	4000 kWe (ISO)	8154 kg/h	duplo efeito 800 TR's	
		2951 kWe; 28,5%; 30o C 75% UR			
		2 x MCI	vapor saturado 8 bar		3.528.520,44
Koblitz	KO-1	1750 kWe (cada)	3000 kg/h	simples efeito 290 TR's	
		38,6% de eficiência elétrica	1 operando + 1 reserva		
Stemag		TG GE PGT5	vapor saturado 10 bar		5.848.858,17
Stemay	ST-1	5000 kWe (ISO)	12100 kg/h		

Análise Econômica

VPL (TA: 6%, sem incentivo fiscal)

TIR (sem incentivo fiscal)

VPL (TA: 9%, sem incentivo fiscal)

Payback (sem incentivo fiscal)

Fonte: dissertação mestrado R. Gonzales Palomino

sistema de cogeração proposto

Fonte: dissertação mestrado R. Gonzales Palomino

Produtos do sistema de cogeração

Dados do sistema de cogeração

Desempenho variando com a carga do motor as condições máximas de carga que o sistema de cogeração produz são 1052 kW de eletricidade, 1335 kg/h de vapor para processo

e 219 TR para produção de frio.

Fonte: dissertação mestrado R. Gonzales Palomino

Geração de vapor e frio no sistema

•Fator de Utilização de Energia

$FUE = rac{\dot{W}_{ele} + \dot{Q}_{\acute{u}til}}{}$

•Rendimento Elétrico Artificial

$$\eta_{ele.art} = rac{\dot{W}_{ele}}{\dot{O}}$$

•Índice de Poupança de Energia

mcomb.PCI-

Vútil

$$IAE = \frac{\frac{\dot{W}_{ele}}{\eta_{e}} + \frac{\dot{Q}_{\acute{u}til}}{\eta_{b}} - \dot{m}_{comb} .PCI}{\frac{\dot{W}_{ele}}{\eta_{e}} + \frac{\dot{Q}_{\acute{u}til}}{\eta_{b}}}$$

Eficiência Purpa

$$\eta_{purpa} = rac{\dot{W}_{ele} + 0.5.\dot{Q}_{\acute{u}til}}{\dot{m}_{comb}.PCI}$$

Índices de desempenho

•Em media a eficiência de primeira lei do motor é 30% e o COP do sistema de refrigeração por absorção é 0,7. O sistema em estudo consegue poupar até 28,5% de combustível em comparação a se produzese por separados os produtos, o fator de utilização de energia chega até 88%.

Fonte: dissertação mestrado R. Gonzales Palomino

Análise exergética

- A eficiência racional, consiste em avaliar um processo desde que o mesmo tenha um produto útil e um insumo definido.
- A eficiência racional, , e a irreversibilidade, l, podem ser calculados para cada subsistema da planta como:

$$\eta_{rac} = \frac{P}{F}$$
 I = F - P

Insumos, produtos e perdas do sistema de cogeração

Volumen de controle	Insumos	Produtos	Perdas
Motor	$Ex_2 + Ex_4 - Ex_5 - (Ex_{34} - Ex_{33})$	W _e	
Caldeira de recuperação	Ex ₅ +W _{B4}	Ex ₂₄ -Ex ₁₅	Ex ₉
Sistema de refrigeração por absorção	$(Ex_{34}-Ex_{32})+W_{B7}+(Ex_{28}-Ex_{30})$	Ex _{Qref}	
Torre de resfriamento	W _{fan} +Ex ₃ +Ex ₁₁ +Ex30	Ex ₂₇	Ex ₃₁
Misturador	$\mathbf{Ex_{26}} + \mathbf{Ex_{13}}$	Ex ₁₄	
Bomba 1	W _{B1}	(Ex ₁₃ -Ex ₁₂)	
Bomba 2	W _{B2}	$(Ex_{26}-Ex_{25})$	
Bomba 3	W _{B3}	$(Ex_{15}-Ex_{14})$	
Bomba 5	W _{B5}	$(Ex_{33}-Ex_{32})$	
Bomba 6	W _{B6}	(Ex ₂₈ -Ex ₂₇)	
Processo	$(Ex_{24}-Ex_{25})$	Ex _{Qprocesso}	
Ciclo	$Ex_1 + Ex_4 + Ex_{10}$	W _e +Ex _{Qprocesso} +Ex _{Qref}	$Ex_9 + Ex_{31}$

Análise exergética

a eficiência de segunda lei (em média) no sistema é 37,5%, no motor 37%, na HRSG 46%, no SRA 46% e na TRE é 94%

as maiores irreversibilidades ocorridas no ciclo devemse ao motor, este participa em meia com o 78% da irreversibilidade total do sistema.

Fonte: dissertação mestrado R. Gonzales Palomino

Irreversibilidades geradas no sistema de cogeração

Otimização

a função objetivo maximiza a diferença das receitas e despesas que se obtém no funcionamento do ciclo.

 $z = C_e W_e + C_v m_v + C_{ref} Q_{ref}$ $-C_c.m_c-C_a.m_a$

Ce: Custo da eletricidade (54,34 US\$/MWh [Aneel, 2003]) Cv: Custo do vapor (0,00881 US\$/kg) Cref: Custo do calor para refrigeração (15,53 US\$/MWh) Cc: Custo de combustível (0,2484 US\$/kg [CSPE, 2003]) Ca: Custo da água (0,000817US\$/kg) RESTRIÇÕES:

0,75 ≤ **q** ≤ **1**

 $\begin{array}{c} T20 - T19 = 3^{\circ}C \\ T7 - T20 = 20^{\circ}C \end{array} T9 \geq 90^{\circ}C \end{array}$

Estados termodinamicos para o ponto otimo de funcionamento

-	Composição	Temperatura	Pressão	Fluxo massico
Fluxo		(°C)	(kPa)	(kg/s)
1	Ar	25.00	101.30	33,1500
2	Ar	25.00	101.30	1.3710
3	Ar	25.00	101.30	31,7800
4	Gás natural	25.00	101.30	0.0878
5	Gases de combustão	645.00	121.60	1,4590
6	Gases de combustão	635,00	121,60	1,4590
7	Gases de combustão	180,40	121,60	1,4590
8	Gases de combustão	112,30	121,60	1,4590
9	Gases de combustão	90,00	121,60	1,4590
10	Água de reposição	25,00	101,30	0,7265
11	Água de reposição	25,00	101,30	0,6524
12	Água de reposição	25,00	101,30	0,0742
13	Água	25,02	200,00	0,0742
14	Água	61,02	200,00	0,3707
15	Água	61,06	350,00	0,3707
16	Água	84,03	350,00	0,3707
17	Água	100,00	350,00	0,3811
18	Água	100,10	800,00	0,3811
19	Água	167,40	800,00	0,3811
20	Vapor	170,40	800,00	0,3811
21	Vapor	190,40	800,00	0,3811
22	Vapor	190,40	800,00	0,0104
23	Vapor	178,00	350,00	0,0104
24	Vapor	190,40	800,00	0,3707
25	Água	70,00	101,30	0,2966
26	Água	70,02	200,00	0,2966
27	Água	25,00	101,30	37,6100
28	Água	25,04	300,00	37,6100
29	Água	31,85	300,00	37,6100
30	Água	37,00	300,00	37,6100
31	Ar (90%)	34,00	101,30	32,4300
32	Água	65	150	17,5500
33	Água	65,03	300	17,5500
34	Água	80	225	17,5500

Análise Termoeconômica

 A teoria de custo exergético (TCE), proposta por Lozano e Valero (1993), consiste em inicialmente dividir adequadamente o sistema analisado em subsistemas, identificando-se nestes os insumos e produtos

Volume de contro	Insumos	Produtos	Perdas
Motor	$Ex_2 + Ex_4 - Ex_5 - (Ex_{34} - Ex_{33})$	W _e	
HRSG	Ex ₅ +W _{B4}	Ex ₂₄ -Ex ₁₅	Ex ₉
SRA e TER	Ex ₃₄ -Ex ₃₂)+W _{B6} +W _{B7} +Ex ₁₁ +E3	Ex _{Qref}	Ex ₃₁
Misturador	$Ex_{26}+Ex_{13}$	Ex ₁₄	
Bomba 1	W _{B1}	$(Ex_{13}-Ex_{12})$	
Bomba 2	W _{B2}	$(Ex_{26}-Ex_{25})$	
Bomba 3	W _{B3}	$(Ex_{15}-Ex_{14})$	
Bomba 5	W _{B5}	(Ex ₃₃ -Ex ₃₂)	
Processo	$(Ex_{24}-Ex_{25})$	Ex _{Qprocesso}	

 Aplicando a preposição P1 em cada um dos subsistemas de nosso sistema em estudo, pode-se obter as seguintes equações:

 $E^*_{B5} = E^*_{33} - E^*_{32}$

 $E_{2}^{*} + E_{4}^{*} - E_{5}^{*} - (E_{34}^{*} - E_{33}^{*}) = E_{em}^{*}$ $E_{5}^{*} + E_{B4}^{*} = E_{24}^{*} - E_{15}^{*} + E_{9}^{*}$ $E^{*}_{3} + E^{*}_{11} + E^{*}_{34} - E^{*}_{32} + E^{*}_{B6} + E^{*}_{B7} = E^{*}_{Qref} + E^{*}_{31}$ $E_{24}^{*} - E_{25}^{*} = E_{Qproc}^{*}$ $E_{13}^{*}+E_{26}^{*}=E_{14}^{*}$ $E^{*}_{B1} = E^{*}_{13} - E^{*}_{12}$ $E_{B2}^{*} = E_{26}^{*} - E_{25}^{*}$ е $E_{B3}^{*} = E_{15}^{*} - E_{14}^{*}$

Estas oito equações não são suficientes para determinar todos os custos, para encontrar as outras condições é necessária a utilização das outras preposições (P2, P3, P4a P4b), aplicando estas considerações pode-se obter as seguintes equações:

$k_1 = k_4 = k_{10} = 1$	$k_9 = k_{31} = 0$
$k_3 = k_2 = k_1$	$k_{12} = k_{11} = k_{10}$
$k_{34} = k_5 = k_4$	$k_{24} = k_{25}$
$k_{34} = k_{32}$	
	Caproc 🔺

Análise Termoeconômica

Custos exergéticos

Fluxo	Composição	Custo exergetico		
Гихо	Composição	k	E*	
1	Ar	1,000	28,08	
2	Ar	1,000	1,16	
3	Ar	1,000	26,91	
4	Natural gas	1,000	3635,00	
5	Gases de combustão	1,000	627,30	
9	Gases de combustão	0,000	0,00	
10	Água de reposição	1,000	36,33	
11	Água de reposição	1,000	32,62	
12	Água de reposição	1,000	3,71	
13	Água	1,007	3,74	
14	Água	2,005	43,50	
15	Água	2,011	43,75	
24	Steam	2,123	671,80	
25	Água	2,123	39,63	
26	Água	2,127	39,76	
31	Ar (90%)	0,000	0,00	
32	Água	1,000	1059,00	
33	Água	1,009	1071,00	
34	Água	1,000	1212,00	
Em	Eletricidade no motor	2,668	2868,00	
Qproc	Calor para processo	2,123	632,20	
Qref	Calor absorbido pelo SRA	4,663	259,30	
B1	Eletricidade na bomba 1	2,668	0,03	
B2	Eletricidade na bomba 2	2,668	0,13	
B3	Eletricidade na bomba 3	2,668	0,25	
B4	Eletricidade na bomba 4	2,668	11,93	

Análise funcional

Volume de controle	Insumos	Produtos
1. Motor	T1=(Ex ₂ +Ex ₄ -Ex ₅)-(Ex ₃₄ -Ex ₃₃)	1W=W _{motor}
2. HRSG	T2=Ex ₅ -Ex ₉ ; W2=W _{B4}	2T=Ex ₂₄ -Ex ₁₅
3. SRA e TER	T3=(Ex ₃₄ -Ex ₃₂)+(Ex ₁₁ +Ex ₃ - Ex ₃₁);W3=W _{B6} +W _{B7}	E _{Qref} =Ex _{Qref}
4. Misturador	T4=Ex ₂₆ +Ex ₁₃	4T=Ex ₁₄
5. Bomba 1	W5=W _{B1}	5T=(Ex ₁₃ -Ex ₁₂)
6. Bomba 2	W6=W _{B2}	6T=(Ex ₂₆ -Ex ₂₅)
7. Bomba 3	W7=W _{B3}	7T=(Ex ₁₅ -Ex ₁₄)
8. Bomba 5	W8=W _{B5}	8T=(Ex ₃₃ -Ex ₃₂)
9. Processo	T9=(Ex ₂₄ - Ex ₂₅)	E _{Qproc} =Ex _{Qprocesso}
10. Distribuidor de água	Fag=Ex ₁₀	10T=Ex ₁₀
11. Distribuidor de ar	Far=Ex ₁	11T=Ex ₁
12. Distribuidor de combustível	Fcom=Ex ₄	12T=Ex4
13. Distribuidor de potência elétrica	1W	W2+W3+W5+W6+W7 +W8+We
14. Junção de exergia	2T; 4T; 5T; 6T; 7T; 8T; 10T; 11T; 12T	T=2T+4T+5T+6T+7T+8T +10T+11T+12T
15. Distribuidor de exergia	т	T1+T2+T3+T4+T9

Insumos, produtos e perdas para a análise pela Analise Funcional

Custos exergéticos pela Analise Funcional

	Cu	istos géticos	Fluxo	k	E*[kJ]
Fluxo		gencos	Т2	1,127	553,80
	k	E* [kJ]	Т3	1,127	156,00
Fag	1,000	36,33	Τ4	1,127	25,25
Far	1,000	28,00	Т9	1,127	335,60
Fcomb	1,000	3635,00	1W	2,998	3222
2T	1,883	554,70	W2	2,998	0,893
4T	1,164	25,25	W3	2,998	52,9
5T	4,583	0,04	W5	2,998	0,03666
6T	4,983	0,15	W6	2,998	0,1495
7T	4,712	0,28	W7	2,998	0,2827
8T	4,469	13,41	W8	2,998	13,41
10T	1,000	36,33	We	2,998	3155
11T	1,000	28,00	Qproc	1,127	335,6
12T	1,000	3635,00	Qref	1,879	208,9

Publicações

Revistas

Cerqueira, S. A. A da Gama e Nebra, S. A.; "Cost Attribution Methodologies in Cogeneration Systems", *Energy Conversion & Management*, 1999, Vol. 40, Iss 15-16, pp 1587-1597.

- Guarinello Júnior, Flávio, Cerqueira, Sérgio, A A G and Nebra, Silvia A.; "Thermoeconomic Evaluation of a Gas Turbine Cogeneration System"; *Energy Conversion and Management,* V.41, p. 1191-1200, 2000.
- Alves, L. G. and Nebra, S. A; "Thermoeconomic Evaluation of a Basic Optimized Chemically Recuperated Gas Turbine Cycle"; *THE INTERNATIONAL JOURNAL OF APPLIED THERMODYNAMICS*, Vol. 6, (no.1), pp.13-22, March – 2003. ISSN 1301 – 9724. Editor in Chief: Dr. Michael von Spakovsky (Virginia Tech, Blacksburg, USA).
- Alves, L. G and Nebra, S.A.; "Basic chemically recuperated gas turbines power plant optimization and thermodynamics second law analysis", Energy, em prensa, 2004.

Congressos Internacionais

Araújo da Gama Cerqueira, S. A. e Nebra, S. A.; "Cost Attribution Methodologies in Cogeneration Systems", Proceedings of "Efficiency, Costs, Optimisation, Simulation and Environmental Aspects of Energy Systems and Processes", July 8-10, 1998, Nancy, France ,V. I, p. 255 -262.

Guarinello, F. Cerqueira, S. A.A. da G. e Nebra, S. A., "Thermoeconomic Evaluation of a Gas Turbine Cogeneration System"; ME'98: 1998 International Mechanical Engineering Congress & Exposition, November 15-20, Anaheim, California, USA. AES - Vol. 38, Proceedings of the ASME Advanced Energy Systems Division, pp. 151 -156.

Gallego, A A ; Martins, G. ; Nebra S A; "Absortion Refrigeration Systems in Cogeneration - Thermoeconomic Analysis of a System Using Natural Gas in a Brewery"; ECOS 2000 Proceedings, Universiteit Twente, Nederland, EUROTHERM SEMINAR 65, 5-7 July, 2000, Part 3: PROCESS INTEGRATION, pp. 1597 - 1608. Alves, L. G.; Nebra, S.A. "Basic Chemically Recuperated Gas Turbines Power Plant Optimization and Termodynamics Second Law Analysis; *Proceedings* ECOS 2002 – 15 th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Berlin, Germany, July 3-5, 2002. Edited by: George Tsatsaronis, Michael J. Moran, Frank Cziesla and Thomas Bruckner, pp.704-711. ISBN 3-00-009533-0

Alves, L. G., ; Nebra, S. A ; "Basic Chemically Recuperated Gas Turbines: An Exergoeconomic Analysis Proposal"; Proceedings of ECOS2003 – 16th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Copenhagen, Denmark, June 30 – July – 2, 2003, pp. 981 – 988. Editado por: Technical University of Denmark, Copenhagen, Denmark. ISBN 87-7475-297-9.

Gonzales Palomino, Raúl and Nebra, Silvia A.; "Energetic, Exergetic, and Exergetic Cost Analysis for a cogeneration System Integrated by an Internal Combustion Engine, HRSG and Absorption Refrigeration System"; Proceedings of ESDA04, 7th Biennial ASME Conference Engineering System Design and Analysis, July 19-22, 2004, Manchester, United Kingdom – ESDA 2004 – 58052, pp. 1 – 9.

Congressos Nacionais

- Alves, L. G., Nebra, S. A., "Trigeração a Partir do Gás Natural: Eletricidade, Vapor para Processo e Produtos Químicos", III Encontro Nacional dos Profissionais do Mercado do GLP, GN, GNV, de 25 a 27 de junho de 2002, São Paulo – SP.
- Nebra, S A, Palestra: "Sistemas de Cogeração: Métodos de Avaliação"; Il Congresso Nacional de Engenharia Mecânica - CONEM 2002; 12 a 16 de Agosto de 2002, João Pessoa, PB, Anais em CD-Rom, p. 1-13. Resumos: Palestra, p. 7.
- Alves, L. G., Nebra, S. A., "Análise da Variação da Temperatura Sobre o Rendimento do Ciclo com Recuperação Química para Turbinas a Gás" CONEM 2002 – Congresso Nacional de Engenharia Mecânica, 12 a 16 de Agosto de 2002, João Pessoa – PB, Anais em CD-Rom, p. 1-10. Resumos: Artigo No. CPB01096, p. 48.
- Alves, L. G., Nebra, S. A., "Análise e Otimização Exergética de um Ciclo de Turbina a Gás com Recuperação Química", Anais do Congresso: ENCIT 2002 – 9th. Brazilian Congress of Thermal Engineering and Sciences, October 15 – 18, 2002, Caxambu-Minas Gerais, Brazil, Artigo No. CIT02-0523. p. 1-8.

- Alves, L. G. e Nebra, S. A. "Thermoeconomic Evaluation of a Basic Optimized Chemically Recuperated Gas Turbine Cycle", Proceedings of the 17th. International Congress of Mechanical Engineering – COBEM 2003, Novembro 10-14, 2003, São Paulo, SP., pp. 1-9 (Anais em CD-ROM, paper No. 1703; ISBN No. 85-85769-14-9).
- Gonzales Palomino, Raul; Nebra, Silvia A.; Bajay, Sergio V.; "Industria de Gás Natural na América do Sul – Retrospectiva e Tendências", IV Congresso Brasileiro de Planejamento Energético, Março 25 – 26, Universidade Federal de Itajubá - UNIFEI, Itajubá, M.G., Brasil, 2004. Anais em CD-Rom, p. 1-12.
- Gonzales Palomino, Raul, Nebra, Silvia A.; Walter, Arnaldo C., "Cogeração com Gás Natural: Metodologia de Seleção e Avaliação Econômica para um Hospital"; IV Congresso Brasileiro de Planejamento Energético, Março 25 – 26, Universidade Federal de Itajubá - UNIFEI, Itajubá, M.G., Brasil, 2004. Anais em CD-Rom, p. 1-10.
- Gonzales Palomino, Raul, Nebra, Silvia A.; Leme, Rodrigo M.; "Políticas para a Promoção da Cogeração – Experiência da Comunidade Européia e o Caso Espanhol"; IV Congresso Brasileiro de Planejamento Energético, Março 25 – 26, Universidade Federal de Itajubá - UNIFEI, Itajubá, M.G., Brasil, 2004. Anais em CD-Rom, p. 1-12.

Gonzales, R.P., Nebra, S.A., Bajay, S.V., Galarza, W.S. Reformas energéticas da indústria do gás natural na América do Sul. IV Congresso Latino-americano e do Caribe de Gás e Eletricidade, Rio de Janeiro, Brasil, abril 26-28, 2004.

Gonzales, R.P., Nebra, S.A., Walter, A.C., Galarza, W.S. Análise da Viabilidade Econômica e Financeira para Sistemas de Cogeração - estudo de caso: HC-UNICAMP. II Congreso Internacional de Científicos Peruanos, Lima, Peru, enero 2-5, 2004.

Gonzales, R.P., Nebra, S.A., Bajay, S.V., Galarza, W.S. Política Pública, Regulação e Integração energética de gás natural na América do Sul. II Congreso Internacional de Científicos Peruanos, Lima, Peru, enero 2-5, 2004.